Chapter 7 Unfolding

Introduction (1)

- **unfolding**
 - A transformation technique
 - Also known as loop unrolling
 - Create a new program describing more than one iteration of the original program

- **Unfolding example**
 - \(y(n) = ay(n-9) + x(n) \)
 - Unfolding factor \(J = 2 \)
 - \(y(2k) = ay(2k-9) + x(2k) \)
 - \(y(2k+1) = ay(2k-8) + x(2k+1) \)
 - Each delay is J-slow

2-unfolded version
Introduction (2)

Applications of unfolding
- Unfold the program to reveal hidden concurrency so that the program can be scheduled to a smaller iteration period
- Design parallel architectures at the word level and bit level for high speed or low power purposes

Unfolding algorithm (1)

Preliminary
- Each node in the original DFG $\Rightarrow J$ nodes with the same function in the unfolded DFG
- Each edge in the original DFG $\Rightarrow J$ edges in the unfolded DFG

Unfolding algorithm
- For each node U in the original DFG, draw J nodes U_0, U_1, \ldots, U_{J-1}
- For each edge $U \rightarrow V$ with w delays in the original DFG, draw the J edges $U_i \rightarrow V_{(i+w)\%J}$ with $\left\lfloor \frac{i+w}{J} \right\rfloor$ delays for $i=0,1,\ldots,J-1$
Unfolding algorithm (2)

- Unfolding using algorithm
 - A: input, B: output, C: ADD, D: MPY
 - Unfolding factor $J = 2$
 - 8 nodes after unfolding, A_i, B_i, C_i, D_i, $i=0,1$
 - $D \rightarrow C$ with no delay \Rightarrow $D_0 \rightarrow C_0$, $D_1 \rightarrow C_1$
 - $C \rightarrow D$ with 9 delay \Rightarrow
 - $C_0 \rightarrow D_{(9+0)\%2}$ with $\left\lceil \frac{9+0}{2} \right\rceil$ delays $\Rightarrow C_0 \xrightarrow{4D} D_1$
 - $C_1 \rightarrow D_{(9+1)\%2}$ with $\left\lceil \frac{9+1}{2} \right\rceil$ delays $\Rightarrow C_1 \xrightarrow{5D} D_0$

Unfolding algorithm (3)

- Unfolding using algorithm (cont.)
 - The k-th iteration of node A_i in the unfolded DFG executes the $(Jk+i)$-th iteration of node A in the original DFG
 - A_0 corresponds to input $x(2k+0)$
 - A_1 corresponds to input $x(2k+1)$
 - B_0 corresponds to output $y(2k+0)$
 - B_1 corresponds to output $y(2k+1)$
Unfolding algorithm (4)

- Unfolding example with $J = 4$

Unfolding example with $J = 3$

Properties of Unfolding (1)

- General observation
 - Unfolding of an edge with w delays produces Jw edges with no delays and w edges with 1 delay in J-folded DFG
 - Unfolding preserves precedence constraints

- Property 5.3.1
 - Unfolding preserves the number of delays in a DFG
 - The sum of the delays on the J unfolded edges $U_i \rightarrow V_{(i+w)\%J}$ for $i = 0, 1, \ldots, J-1$ is the same as the number of delays on the edge $U \rightarrow V$ in the original DFG
 - i.e. $\left \lfloor \frac{w}{J} \right \rfloor + \left \lfloor \frac{w+1}{J} \right \rfloor + \cdots + \left \lfloor \frac{w+J-1}{J} \right \rfloor = w$
Properties of Unfolding (2)

Loop unfolding

- Assume a loop $A \rightarrow A$ with w_l delay
- Traverse the loop p times: $A \rightarrow A \cdots \rightarrow A$ with pw_l delay
- The corresponding unfolded path starting at the node A_i, $0 \leq i \leq J-1$
- For a J-unfolded DFG, the starting and end points of a p times traversed loop are $A_i \rightarrow A_{(i+pw_l)\%J}$
- This path forms a loop in the unfolded DFG if $i = (i+pw_l)\%J$
- Question: what is the minimum value of p?

Properties of Unfolding (3)

Loop unfolding example

- A single loop $l = A \rightarrow B \rightarrow C \rightarrow A$ with $w_l = 6$ delays
- 3 unfolded DFG
- $i = (i+pw_l)\%J \Rightarrow i = (i+6p)\%3$ holds for $i = 0,1,2$ for $p=1$
- $A_0 \rightarrow B_1 \rightarrow C_0 \rightarrow A_0$
- $A_1 \rightarrow B_2 \rightarrow C_1 \rightarrow A_1$
- $A_2 \rightarrow B_0 \rightarrow C_2 \rightarrow A_2$
Loop unfolding example (cont.)

- 4 unfolded DFG
- \(i = (i+p_{\text{wl}}) \% J \Rightarrow i = (i+6p) \% 4 \) holds for \(i = 0,1,2 \) for \(p=2 \)
- \(A_0 \rightarrow B_1 \rightarrow C_3 \rightarrow A_2 \rightarrow B_3 \rightarrow C_1 \rightarrow A_0 \)
- \(A_1 \rightarrow B_2 \rightarrow C_0 \rightarrow A_3 \rightarrow B_0 \rightarrow C_2 \rightarrow A_1 \)
- Consists of 2 loops in the unfolded DFG

\[
\begin{align*}
A_0 &\rightarrow B_1 & B_3 &\rightarrow C_1 & A_2 &\rightarrow B_3 & C_0 &\rightarrow A_0 \\
A_1 &\rightarrow B_2 & C_1 &\rightarrow A_0 & B_3 &\rightarrow C_2 & A_0 &\rightarrow B_1
\end{align*}
\]

Properties of Unfolding (5)

Lemma 5.3.1

- \(i = (i+p_{\text{wl}}) \% J \iff p_{\text{wl}} = qJ \) for an integer \(q \)

Lemma 5.3.2

- The smallest positive integer \(p \) that satisfies \(p_{\text{wl}} = qJ \) is \(J/\gcd(w_l, J) \)
- Proof:
 \(\gcd \) is a common divisor of \(w_l \) and \(J \).
 \(\lcm \) is a common multiple of \(w_l \) and \(J \).
 Use Bézout's identity to express \(\gcd \) and \(\lcm \) in terms of integers.

\[
\begin{align*}
\gcd \{w_l, J\} &\text{ divides } w_l \Rightarrow \exists a \in \mathbb{Z} : a = \gcd \{w_l, J\}
\Rightarrow a = \lcm \{w_l, J\}
\Rightarrow q = \left(\frac{a}{J} \right) \in I
\Rightarrow p = \left(\frac{a}{w_l} \right) \in I
\Rightarrow minimum \; p = \frac{\lcm \{w_l, J\}}{\gcd \{w_l, J\}} = \frac{J}{w_l}
\end{align*}
\]
Properties of Unfolding (5)

Property 5.3.2
- \(J \)-unfolding of a loop \(l \) with \(w_l \) delays in the original DFG leads to
- \(\gcd(w_l, J) \) loops in the unfolded DFG
- Each loop contains \(w_l / \gcd(w_l, J) \) delays and \(J / \gcd(w_l, J) \) copies of each node in loop \(l \)

Property 5.3.3
- Unfolding a DFG with iteration bound \(T_\infty \) results in a \(J \)-unfolded DFG with iteration bound \(JT_\infty \)
 - proof \(T_\infty = \max_i \left\{ \frac{t_l}{w_l} \right\} \) for the original DFG, from Property 5.3.2
 \[T'_\infty = \max_i \left\{ \frac{J / \gcd\{w_l, J\} t_l}{w_l / \gcd\{w_l, J\}} \right\} = J \max_i \left\{ \frac{t_l}{w_l} \right\} = JT_\infty \]

Critical path, unfolding & retiming (1)

Property 5.4.1
- Consider a path with \(w \) delays in the original DFG
 - \(J \)-unfolding leads to \((J-w)\) paths with no delay and \(w \) paths with 1 delay each, when \(w < J \)

Corollary 5.4.1
- Any path in the original DFG containing \(J \) or more delays leads to \(J \) paths with 1 or more delays in each path
- A path in the original DFG with \(J \) or more delays cannot create a critical path in the \(J \)-unfolded DFG
Critical path, unfolding & retiming (2)

Problem statement
- retime the original DFG such that the J-unfolded version of the retimed DFG will meet a critical path computation time c

Observation
- The critical path of the unfolded DFG can be c if there exists a path in the original DFG with computation time c and less than J delays

Retiming constraint for critical path
- If $D(U, V) \geq c$, $\Rightarrow W_r(U, V) = W(U, V) + r(V) - r(U) \geq J$
- Or $r(U) - r(V) \leq W(U, V) - J$
- + Feasibility constraint $w(e) + r(V) - r(U) \leq 0$

Critical path, unfolding & retiming (3)

Lemma 5.4.1
- Any feasible clock cycle period that can be obtained by retiming the J-folded DFG, G_J
 - can be achieved by retiming the original DFG, G, directly and then unfolding it by unfolding factor J

Proof
- Let r' be a legal retiming for the unfolded DFG, G_J, which leads to critical path c
- Let r be a retiming for G defined as $r(U) = \sum_{i=0}^{J-1} r'(U_i)$
- We next prove that r is a feasible retiming on G such that the G_r will have a critical path c
Critical path, unfolding & retiming (4)

Proof (cont.)
- Proof of the feasibility of retiming r
- for $U \rightarrow V$ with delay w in G, since r' is a legal timing in G_r
 \[r'(U_i) - r'(V_{(i+w)\%J}) \leq \left\lfloor \frac{i + w}{J} \right\rfloor \]
- Summing above for $i = 0$ to $J-1$, \(\Rightarrow r(U) - r(V) \leq w \)
- So r is a legal retiming in G
- Next prove the critical path in J-unfolded DFG is c
 \[r'(U_i) - r'(V_{(i+w)\%J}) \leq \left\lfloor \frac{i + w}{J} \right\rfloor - 1 \quad \text{if} \quad D(U_i \rightarrow V_{(i+w)\%J}) > c \]
- Summing above for $i = 0$ to $J-1$ \(\Rightarrow r(U) - r(V) \leq W(U,V) - J \)
- which is the desired critical path constraint shown in p4-15

Sample period reduction (1)

Cases when iteration bound equal to T_∞ cannot be achieved without unfolding
- A node in the DFG with computation time greater than T_∞ (assume the node cannot be further pipelined)
- When the iteration bound is not an integer

Case 1 example
- $T_\infty = 3$
- but node S & T require 4 u.t.
- Minimum iteration period after retiming is 4
- Can be reduced to 3 after unfolding
Sample period reduction (2)

Case 1 example after unfolding
- Unfolding factor = 2
- T_{∞} of the unfolded DFG is 6
- Critical path of the unfolded DFG is 6
- Sample period = $6/2 = T_{\infty}$ of the original DFG
- If the computation time of a node U, t_U is greater than T_{∞}, $\left\lceil t_U / T_{\infty} \right\rceil$ unfolding is needed

Sample period reduction (3)

Case 2 example
- $T_{\infty} = 4/3$
- Retiming without unfolding can only achieve iteration period 2
- Unfolding 3 times and T_{∞} of the unfolded DFG is 4
- Equivalent sample period is 4/3
- If a critical loop bound is t_l/w_l, then w_l times unfolding should be used
Sample period reduction (4)

- If the longest node computation time is larger than T_∞ and T_∞ is not an integer, minimum unfolding factor J is
 - JT_∞ is an integer
 - JT_∞ is greater than the longest node computation time

- A perfect rate DFG
 - Any DFG with 1 delay in each loop
 - Can always be scheduled such that the iteration bound is equal to T_∞

Sample period reduction (5)

- Any DFG, if not perfect rate, can be unfolded to become a perfect rate one
 - Recall property 5.3.2
 - A loop with w_l delays forms $\gcd(w_l,J)$ loops and each containing $w_l/\gcd(w_l,J)$ delays after J time unfolding
 - Choose J as a multiple of w_l, we have $\gcd(w_l,J) = w_l$ and $w_l/\gcd(w_l,J) = 1$, the unfolded DFG is a perfect rate one
 - For a DFG containing multiple loops, choose J equal to the lcm of all loop delays
Periodic schedules (1)

- Period schedules
 - Can be constructed from the acyclic precedence graphs that are obtained by deleting all edges with delay elements from the DFG
 - Overlapped v.s. non-overlapped schedules

- Non-overlapped schedule
 - The period of the schedule is the same as the critical path of the acyclic precedence graph

- Overlapped schedule
 - The schedules of two successive iterations overlap
 - The period of the schedule is smaller than the critical path of the acyclic precedence graph

Periodic schedules (2)

- Non-overlapped schedule example
 - Assume T_A, T_B, T_C are 1, 2, 4 u.t. respectively
 - The iteration bound is 3.5 u.t.
 - Schedule period = 6 = critical path
 - Retiming can only achieve an iteration period of 4 u.t.
Periodic schedules (2)

- overlapped schedule example
 - 2-unfolded DFG
 - Average iteration period is 3.5 u.t.

Parallel processing

- Parallel processing
 - Word serial → word parallel
 - Bit serial → bit parallel or digit serial

- Word-level parallel processing
 - original version: one sample per clock
 - Unfolded version: two samples per clock
In general, a j unfolded DFG leads to a parallel architecture computing j words per clock cycle.

Example

$$y(n) = ax(n) + bx(n-4) + cx(n-6)$$

Example (cont.)

3-parallel DSP program
Bit level parallel processing (1)

- **Bit serial processing**
 - One bit is processed per clock cycle
 - A complete word is processed in W clock cycles

- **Bit parallel processing**
 - One word of W bits is processed every clock cycle

- **Digit serial processing**
 - N (digit size) bits are processed per clock cycle
 - A word is processed in W/N clock cycles

![Bit-parallel](image1)

![Digit-serial](image2)

$W = 6$

$N = 2$

Bit level parallel processing (2)

- **Bit serial adder example**
 - A switch is required
 - ![Adder Circuit](image3)

- **Switch unfolding**
 - Assumption 1: W is a multiple of the unfolding factor J, i.e. $W = W'J$
 - Assumption 2: all edges into and out of the switch have no delays
Switch unfolding (cont.)

- \(Wl + u = J(W'l + \left\lfloor u / J \right\rfloor) + (u \% J) \)
- Draw an edge with no delays in the unfolded graph from node \(U_{u \% J} \) to node \(V_{u \% J} \),
- which is switched at time instance \((W'l + \left\lfloor u / J \right\rfloor) \)

Example

- \(W = 12, u = 7, J = 3 \)
- \(W = W'J \Rightarrow W' = 4 \)
- \(12l + 7 = 3(4l + \left\lfloor 7 / 3 \right\rfloor) + (7 \% 3) = 3(4l + 2) + 1 \)
- Means from node \(U_1 \) to \(V_1 \) and switching at \(4l + 2 \)
- \(12l + 1 = 3(4l + 0) + 1 \)
- \(12l + 7 = 3(4l + 2) + 1 \)
- \(12l + 9 = 3(4l + 3) + 0 \)
- \(12l + 11 = 3(4l + 3) + 2 \)
Bit level parallel processing (5)

- Unfolding a switch with delays
 - Employing a dummy node

\[
\begin{align*}
2)12(356 + 2D_{6l+1,5} + \sum_{i=0}^{4} 2D_{6l+0,2,3,4} &= 0 & \text{ll} \\
1)12(346 + 2D_{6l+1,5} + \sum_{i=0}^{4} 2D_{6l+0,2,3,4} &= 1 & \text{ll} \\
0)12(336 + 2D_{6l+1,5} + \sum_{i=0}^{4} 2D_{6l+0,2,3,4} &= 2 & \text{ll} \\
2)02(326 + 2D_{6l+1,5} + \sum_{i=0}^{4} 2D_{6l+0,2,3,4} &= 3 & \text{ll} \\
1)02(316 + 2D_{6l+1,5} + \sum_{i=0}^{4} 2D_{6l+0,2,3,4} &= 4 & \text{ll} \\
0)02(306 + 2D_{6l+1,5} + \sum_{i=0}^{4} 2D_{6l+0,2,3,4} &= 5 & \text{ll}
\end{align*}
\]

- For J = 3 unfolding

\[
\begin{align*}
6l + 0 &= 3(2l + 0) + 0 \\
6l + 1 &= 3(2l + 0) + 1 \\
6l + 2 &= 3(2l + 0) + 2 \\
6l + 3 &= 3(2l + 1) + 0 \\
6l + 4 &= 3(2l + 1) + 1 \\
6l + 5 &= 3(2l + 1) + 2
\end{align*}
\]

Bit level parallel processing (6)

- Unfolding a switch with delays (cont.)
 - Dead node \(A_1 \) is eliminated
 - Number of delays is not preserved
Digital serial processing example

- 4-bit bit serial adder

\[
\begin{align*}
A_3 & \rightarrow A_2 & \rightarrow A_1 & \rightarrow A_0 \\
b_3 & \rightarrow b_2 & \rightarrow b_1 & \rightarrow b_0
\end{align*}
\]

- 4-unfolded version (bit parallel ripple adder)

Unfolded DFG

Architecture design

Digital serial processing example (cont.)

- 2-unfolded version

- Digit size = 2
Switch unfolding when W is not a multiple of J

- determining $L = \text{lcm}\{W, J\}$
- Replacing switching instance (not switch) $Wl + u$ with L/W
 switching instances $Ll + u + wW$ for $w = 0$ to $L/W - 1$
- Switch periodicity is changed from W to L
- Each switching instance is expanded by a factor L/W
- Switching periodicity is now a multiple of J
- Proceeds with the previous approach

Example

- $W = 4, J = 3 \implies L = 12$
- Switching instance $4l$ is expanded to $12l, 12l + 4, 12l + 8$
- Switching instance $4l+1$ is expanded to $12l+1, 12l + 5, 12l+9$
Example (cont.)

- Process 3 words in every 4 clock cycles