Chapter 9
Pipeline and Parallel Recursive and Adaptive Filters

- Yin-Tsung Hwang

Introduction (1)

- Any required digital filter spectrum can be realized using FIR or IIR filters
- IIR filters require lower tap order but have potential stability problem
- adaptive filters are used in time varying systems
- coefficients of the adaptive digital filters are adapted at each iteration
- recursive and adaptive filters cannot be easily pipelined or processed in parallel due to the feedback loops
Parallelizing and pipelining recursive digital filters
- look ahead computation
- incremental block processing
- relaxed look ahead transform

Pipeline Interleaving in Digital Filters

- Three forms of pipeline interleaving
 - inefficient single/multi-channel interleaving
 - efficient single-channel interleaving
 - efficient multi-channel interleaving
- inefficient single/multi-channel interleaving
 - consider a 1st order LTI recursion
 - \(y(n+1) = a*y(n) + b*u(n) \)
Pipeline Interleaving in Digital Filters

(a) a simple 1st order recursion
(b) inserting M-1 delay
(c) 5-way interleaving

Single/Multi-Channel Interleaving (1)

- Iteration period in (a) is $T_m + T_a$
- M-stage pipelined version in (b), where $M-1$ additional latches are added
 - clock period can be reduced by M times
 - sample period must be increased M times for correct operation
 - M times rescaling
 - effective initiation interval and computing latency remains unchanged
 - overhead of $M-1$ additional latches
Single/Multi-Channel Interleaving (2)

- in (c), M independent time series are operated on the same hardware
 - may correspond to each cascade stage of a large filter
 - or independent channels requiring identical filtering operations
- also known as M-slow circuit
- potential drawbacks
 - sample rate is M times slower than the clock rate
 - inefficient processor utilization if M independent computing series are not available

Efficient Single Channel Interleaving (1)

- 1-step Look ahead transformation
 - $y(n+1) = ay(n) + bu(n)$
 - $y(n+2) = a[a*y(n) + b*u(n)] + b*u(n+1)$
 - ⇒ iteration bound = $2(T_m+T_a)/2$
 - $y(n+2) = a^2y(n) + ab^u(n) + b*u(n+1)$
 - ⇒ iteration bound = $(T_m+T_a)/2$
- M-step look ahead transformation
 $$y(n + M) = a^M y(n) + \sum_{i=0}^{M-1} a^i \cdot b \cdot u(n + M - 1 - i)$$
 - coefficients can be pre-computed
Efficient Single Channel Interleaving (2)

(a) equivalent realization of unfolding 1st order IIR filter 1 time
(b) equivalent 1st order recursion after look ahead transform

Efficient Single Channel Interleaving (3)

- M-step look ahead transformation
 - allows a single serial computation transformed into M independent concurrent computations
 - loop delay is M ⇒ computation is completed in M cycles
 - iteration bound is \((T_m+T_a)/M\)
 - hardware complexity and computing latency are linearly increased
 - M times higher sampling rate than than the original graph
 - initial conditions
 - \(y(-i) = a^{-i} \ast y(0), \ i = 1, 2, \ldots, M-1\)
Efficient Single Channel Interleaving (4)

(a) equivalent 1st order recursion after (M-1) step look ahead transform

(b) a partial scheduling for M = 5

Efficient Multi-Channel Interleaving

- Look ahead transform + pipeline interleaving
 - assume P independent time series (channels)
 - loop is M-stage pipelined
 - ⇒ the recursion must be iterated (Q -1) times, where M = P*Q
- Example for M = 6, P = 2
 \[y^i(n+3) = a^3 y^i(n) + a^2 b u^i(n) + a b u^i(n+1) + b u^i(n+2), \quad i = 1,2 \]
- a partial schedule for a 2-channel with 6 pipeline stages obtained using 2-step LA
Pipelining in 1st Order IIR Filters

- Look ahead transform introduces canceling poles and zeros
 - if the introduced poles and zeros do not cancel each other exactly due to e.g. finite precision HW limitation
 - the poles outside unit circle will cause stability problem
 - pipelined realization for a 1st order IIR filter is always stable provided the original is stable

- Decomposition technique
 - to implement the non-recursive portion due to look ahead transform
 - to achieve logarithmic HW complexity increase w.r.t. the No. of pipeline stages

Look Ahead for 1st order IIR Filters

- Consider a first order filter
 - contains a pole at $z = a, a \leq 1$
 \[H(z) = \frac{1}{1 - a \cdot z^{-1}} \]

- a 3-stage pipelined version filter
 - contains added poles and zeros at $z = ae^{\pm(j2\pi/3)}$
 \[H(z) = \frac{1 + az^{-1} + a^2 z^{-2}}{1 - a^3 \cdot z^{-3}} \]
 - because the introduced poles have magnitude always less than 1
 - \Rightarrow the filter is always stable even the added poles are not exactly canceled out
Non-recursive part of an M (power of 2) -stage pipeline is decomposed into $\log_2 M$ sets of transformation.

Consider a 1st order recursive filter $H(z) = \frac{b \cdot z^{-1}}{1 - a \cdot z^{-1}}$

- has a single pole at $z = a$
- after look ahead

$H(z) = \frac{b \cdot z^{-1} \prod_{i=0}^{\log_2 M-1} (1 + a^{2^i} \cdot z^{-2^i})}{1 - a^M \cdot z^{-M}}$

- adding $(M - 1)$ poles and zeros at identical locations
- has poles at locations

$$a, \ ae^{j2\pi/M}, \ ae^{j2(2\pi)/M}, \cdots, \ ae^{j(M-1)(2\pi)/M}$$

The decomposition of the canceling zeros

- the i-th stage implements 2^i zeros located at

$$z = ae^{j(2n+1)\pi/2^i}, \ n = 0,1,\cdots, (2^i - 1)$$

- requires a single pipelined multiplication operation independent of the stage number i.
- A total of $(\log_2 M + 2)$ multiplication is needed.
Power of 2 Decomposition (3)

(a) pole representation of a 1st order recursive filter
(b) pole zero representation of a 1st order LTI recursive system with 8 loop pipelining stages
(c) decomposition based pipeline implementation for M = 8

Power of 2 Decomposition (4)

- Time domain explanation

 \[y(n+1) = a \cdot y(n) + b \cdot u(n) \]

 \[\Rightarrow y(n + M) = a^M \cdot y(n) + \sum_{i=0}^{M-1} a^i \cdot b \cdot u(n + M - 1 - i) \]

- for M=8 example

 \[y(n+8) = a^8 \cdot y(n) + \sum_{i=0}^{7} a^i \cdot b \cdot u(n + 7 - i) \]

 where

 \[f_0(n) = b \cdot u(n) \]

 \[f_1(n) = a \cdot f_0(n-1) + f_0(n) \]

 \[f_2(n) = a^2 \cdot f_1(n-2) + f_1(n) \]

 \[= a^8 \cdot y(n) + \sum_{i=0}^{3} a^{2i} \cdot f_1(n + 7 - 2i) \]

 \[= a^8 \cdot y(n) + \sum_{i=0}^{1} a^{4i} \cdot f_2(n + 7 - 4i) \]
In finite precision implementation, the poles are located at

\[p = (a^M + \Delta)^{1/M} \approx a(1 + \frac{\Delta}{M \cdot a^M}) \]

where \(\Delta \) corresponds to finite precision error in representing \(a^M \)
- the deviation becomes severe when \(|a| << 1\)
- not a problem

Inexact pole-zero cancellation
- leads to phase and magnitude error
- can be reduced by increasing the word length

Inexact pole zero cancellation due to finite precision implementation
General Decomposition (1)

- If \(M=M_1M_2\cdots M_p \)
 - \(\Rightarrow \) the non-recursive stages implement \((M_1-1), M_1(M_2-1), \cdots, M_1M_2\cdots(M_p-1)\) zeros

- A 12-stage pipeline decomposition example
 - \(12 = 2 \times 3 \times 2 \)
 - \(H(z) = \frac{\sum_{i=0}^{11} a^i \cdot z^{-i}}{1 - a^{12}z^{-12}} \)
 \[= \frac{(1 + az^{-1})(1 + a^2z^{-2} + a^4z^{-4})(1 + a^6z^{-6})}{1 - a^{12}z^{-12}} \]
 - 1st stage implements the zero at \(-a\)
 - 2nd stage implements 4 zeros at \(a \cdot e^{\pm j\pi/3}, a \cdot e^{\pm j2\pi/3}\)
 - 3rd stage implements 6 zeros at \(\pm ja, a \cdot e^{\pm j\pi/6}, a \cdot e^{\pm j5\pi/6}\)

General Decomposition (2)

(a) Pole zero location of a 12-stage pipelined 1st order recursive filter

(b) Decomposition of the zeros of the pipelined filter for a \(2 \times 3 \times 2\) decomposition
General Decomposition (3)

- An alternative $2 \times 2 \times 3$ pipeline decomposition
 - $H(z) = \frac{(1 + az^{-1})(1 + a^2 z^{-2})(1 + a^4 z^{-4} + a^8 z^{-8})}{1 - a^{12} z^{-12}}$
 - 1st stage: $-a$
 - 2nd stage: $\pm ja$
 - 3rd stage: $a \cdot e^{\pm j\pi/6}$, $a \cdot e^{\pm j\pi/3}$, $a \cdot e^{\pm j2\pi/3}$, $a \cdot e^{\pm j5\pi/6}$

- An alternative $3 \times 2 \times 2$ pipeline decomposition
 - $H(z) = \frac{(1 + az^{-1} + a^2 z^{-2})(1 + a^3 z^{-3})(1 + a^6 z^{-6})}{1 - a^{12} z^{-12}}$
 - 1st stage: $a \cdot e^{\pm j2\pi/3}$
 - 2nd stage: $-a, a \cdot e^{\pm j\pi/3}$
 - 3rd stage: $a \cdot e^{\pm j\pi/6}$, $\pm ja, a \cdot e^{\pm j5\pi/6}$

Pipelining in High Order IIR Filters

- Clustered look ahead transforms
 - linear hardware complexity w.r.t. pipeline stages
 - but not always guaranteed to be stable

- Scattered look ahead transforms
 - guaranteed to be stable
 - higher hardware complexity, i.e. $N*M$

- both transforms reduce to the same form in the 1st order IIR filter case
Consider an N-th order direct form IIR filter

\[H(z) = \frac{\sum_{i=0}^{N} b_i \cdot z^{-i}}{1 - \sum_{i=1}^{N} a_i \cdot z^{-i}} \]

\[y(n) = \sum_{i=1}^{N} a_i y(n-i) + \sum_{i=0}^{N} b_i u(n-i) \]

\[= \sum_{i=1}^{N} a_i y(n-i) + z(n) \]

- the sample rate is limited by the throughput of 1 multiplication and 1 addition

Adding canceling poles and zeros such that the coefficients of \(z^{-1}, \cdots, z^{-(M-1)}\) in the denominator becomes zero.

Look ahead the cluster of past N outputs by M-1 steps

- \(y(n-1), y(n-2), \cdots, y(n-N) \)
 \(\Rightarrow y(n-M), y(n-M-1), \cdots, y(n-M-N+1) \)

- the critical loop contains M delay elements and a single multiplication
- sample rate can be increased by a factor M
- \textit{M-stage clustered look-ahead pipelining}
Clustered Look-Ahead Pipelining (3)

- Consider an all-pole 2nd order IIR
 - with poles at \(z = 1/2 \) and \(z = 3/4 \)
 - original transfer function \(H(z) = \frac{1}{1 - \frac{5}{4} z^{-1} + \frac{3}{8} z^{-2}} \)
 - for 2-stage pipelining, the coefficient of \(z^{-1} \) must be nullified
 - multiply the numerator and denominator by \((1+5/4z^{-1})\)
 - i.e. adding canceling pole and zero at \(z = -5/4 \)
 - the transformed transfer function

\[
H(z) = \frac{1 + \frac{5}{4} z^{-1}}{1 - \frac{19}{16} z^{-2} + \frac{15}{32} z^{-3}}
\]

Clustered Look-Ahead Pipelining (4)

- 3-stage pipelining
 - multiply the numerator and denominator by
 \((1+5/4z^{-1}+19/16z^{-2})\)
 - the transformed transfer function

\[
H(z) = \frac{1 + \frac{5}{4} z^{-1} + \frac{19}{16} z^{-2}}{1 - \frac{65}{64} z^{-3} + \frac{57}{128} z^{-4}}
\]

- general form of multiplying factors
 - \(\sum_{i=0}^{M-1} r_i \cdot z^{-i} \), where \(r_i = 0, \text{ for } i = 1, 2, \cdots, N - 1 \)
 - \(r_0 = 1 \)
 - \(r_i = \sum_{k=1}^{N} a_k r_{i-k}, \text{ for } i > 0 \)
Clustered Look-Ahead Pipelining (5)

- **Hardware implementation complexity**
 - coefficients of the filters are pre-computed off-line
 - numerator (non-recursive) part requires $N+M$ MPYs
 - denominator (recursive) part requires N MPYs
 - total $(N + N + M)$ multiplications \Rightarrow linear HW implementation complexity

- **Filter stability problem**
 - adding poles may lie outside the unit circle
 - example: assume the 2nd order IIR has poles at $z = 0.5$ and $z = 0.75$
 - 2-stage pipelining introduce an additional pole at $z = -1.25$

Clustered Look-Ahead Pipelining (6)

(a) pole zero representation of a stable 2nd order recursive filter
(b) poles & zeros after 2-stage pipelining using clustered look ahead
(c) poles & zeros after 3-stage pipelining using clustered look ahead
Clustered Look-Ahead Pipelining (7)

- Filter stability problem (cont.)
 - 3-stage pipelining introduce two additional poles at
 \[z = 0.625 \pm j 0.893 \]
 - note that the original filter is stable!

Stable Clustered Look ahead Filter Design (1)

- Consider a stable recursive digital filter
 \[H(z) = \frac{N(z)}{D(z)} \Rightarrow H(z) = \frac{N(z)P(z)}{D(z)P(z)} = \frac{N(z)P(z)}{1 - z^{-M}Q(z)} \]

 - \(P(z) \) represents superfluous poles needed to create the desired pipeline delay \(M \)
 - for \(M > M_c \) (some critical delay), the filter is always stable
 - numerical search methods are needed to obtain optimal pipelining level \(M \) and \(P(z) \)
 - Example: consider \(H(z) = \frac{1}{1-1.5336 \cdot z^{-1} + 0.6889 \cdot z^{-2}} \)
 - \(M_c = 5 \) and for \(M = 6 \),
 \[H(z) = \frac{1+1.5336 \cdot z^{-1} + 1.663 \cdot z^{-1} + 1.4939 \cdot z^{-1} + 1.1454 \cdot z^{-1} + 0.7275 \cdot z^{-1}}{1-1.3265 \cdot z^{-6} + 0.5011 \cdot z^{-7}} \]
Stable Clustered Look ahead Filter Design (2)

(a) original poles
(b) poles & zeros of a 6-stage pipelined filter using a stable clustered look ahead

- when the number of denominator multipliers is larger, pipelined filter suffers from large round-off noise
 - the denominator cannot be decomposed in order to maintain M level of pipelining

Scattered Look Ahead Pipelining (1)

- The denominator of \(H(z) \) is transformed to containing \(N \) terms, \(Z^{-M}, Z^{-2M}, \ldots, Z^{-NM} \)
- equivalently, \(y(n) \) is computed in terms of \(N \) past scattered states \(y(n-M), y(n-2M), \ldots, y(n-NM) \)
- for each pole, \((M-1)\) canceling poles and zeros are introduced
 - with equal angular spacing
 - same distance from the origin as that of the original pole
 - e.g. if the original pole is \(z = p \)
 - added poles and zeros are \(z = pe^{j2\pi k/M}, \text{ for } k = 1, 2, \ldots, (M-1) \)
Scattered Look Ahead Pipelining (2)

- Assume the denominator of $H(z)$ can be factorized as
 \[D(z) = \prod_{i=1}^{N} (1 - p_i \cdot z^{-1}) \]
- after scattered look-ahead transform
 \[H(z) = \frac{N(z)}{D(z)} = \frac{N(z)}{\prod_{i=1}^{N} \prod_{k=1}^{M-1} (1 - p_i e^{j2\pi k/M} z^{-1})} = \frac{N'(z)}{D'(Z^M)} \]
- consider the 2nd order filter, for $M = 3$
 \[H(z) = \frac{1}{1 - a_1 z^{-1} - a_2 z^{-2}} \Rightarrow \]
 \[H(z) = \frac{1 + a_1 z^{-1} + (a_1^2 + a_2) z^{-2} - a_1 a_2 z^{-3} + a_2^2 z^{-4}}{1 - (a_1^3 + 3a_1 a_2) z^{-3} - a_2^3 z^{-6}} \]

Scattered Look Ahead Pipelining (3)

- Consider the 2nd-order filter with complex conjugate poles at $z = r \cdot e^{\pm j\theta}$
 \[H(z) = \frac{1}{1 - 2r \cdot \cos \theta \cdot z^{-1} + r^2 \cdot z^{-2}} \]
- for 3-stage pipelining
 \[H(z) = \frac{1 + 2r \cdot \cos \theta \cdot z^{-1} + (1 + 2 \cos 2\theta) r^2 \cdot z^{-2} + 2r^3 \cos \theta \cdot z^{-3} + r^4 \cdot z^{-4}}{1 - 2r^3 \cdot \cos 3\theta \cdot z^{-3} + r^6 \cdot z^{-6}} \]
- when $\theta = 2\pi/3$, only 1 pole & zero at $z = r$ are added
 \[H(z) = \frac{(1 - r \cdot z^{-1})}{(1 + r \cdot z^{-1} + r^2 \cdot z^{-2})(1 - r \cdot z^{-1})} = \frac{1 - r \cdot z^{-1}}{1 - r^3 \cdot z^{-3}} \]
Scattered Look Ahead Pipelining (4)

Consider the 2nd-order filter with poles at $z = r_1, r_2$

$$H(z) = \frac{1}{1 - (r_1 + r_2) \cdot z^{-1} + r_1 r_2 \cdot z^{-2}}$$

for 3-stage pipelining adding poles at

$$z = r'_1 \cdot e^{\pm j 2\pi / 3}, \quad z = r'_2 \cdot e^{\pm j 2\pi / 3}$$

$$H(z) = \frac{1 + (r'_1 + r'_2) \cdot z^{-1} + (r'_1^2 + r'_1 r'_2 + r'_2^2) \cdot z^{-2} + r'_1 r'_2 (r'_1 + r'_2) \cdot z^{-3} + r'_1^2 r'_2^2 \cdot z^{-4}}{1 - (r'_1^3 + r'_2^3) \cdot z^{-3} + r'_1^3 r'_2^3 \cdot z^{-6}}$$

Scattered Look Ahead Pipelining (5)

Pole zero representation of a 3-stage pipelined equivalent stable filter using scattered look ahead
Power of 2 Decomposition in Scattered Look Ahead Scheme (1)

- The multiplication complexity in scattered look ahead transform
 - non-recursive portion: \((NM+1)\)
 - recursive portion: \(N\)
 - much greater than that in clustered look ahead scheme

- Consider a recursive filter

\[
H'(z) = \frac{\sum_{i=0}^{N} b_i \cdot z^{-i}}{1 - \sum_{i=1}^{N} a_i \cdot z^{-i}} = \frac{N(z)}{D(z)}
\]

- By multiplying \((1 - \sum_{i=1}^{N} (-1)^i a_i z^{-i})\) in both numerator and denominator.

Power of 2 Decomposition (2)

- For 2-stage pipelining

\[
H'(z) = \frac{\sum_{i=0}^{N} b_i \cdot z^{-i} (1 - \sum_{i=1}^{N} (-1)^i a_i z^{-i})}{[1 - \sum_{i=1}^{N} a_i \cdot z^{-i}][1 - \sum_{i=1}^{N} (-1)^i a_i \cdot z^{-i}]} = \frac{N'(z)}{D'(z^2)}
\]

- The denominator contains terms of \(z^2, z^4, \ldots, z^{2N}\)
- Subsequent transforms can be applied to obtain 4, 8, and 16 stage pipelined implementations
- \(\log_2 M\) sets of transforms are needed to achieve \(M\)-stage pipelining
- Each transform double the speed but also increase the hardware complexity by \(N\)
Power of 2 Decomposition (3)

- Applying \((\log_2M-1)\) sets of transforms leads to \(M\)-stage pipelining.
- Requires \((2N+N\log_2M+1)\) multiplications.
- Logarithmic complexity w.r.t. \(M\) (speed up).
- Total number of delays \(\approx NM*(\log_2M+1)\).
- \(NM\) delays are used in the non-recursive portion.
- \(NM\log_2M\) delays are required to pipeline each \(N\log_2M\) multipliers by \(M\) stages.

Power of 2 Decomposition (4)

- \(N(M-1)\) poles and zeros are added.
- \(N(M-1)\) zeros are decomposed and implemented in \(\log_2M\) stages.
- 1st stage realizes \(N\)-th order nonrecursive section.
- Following stages implements \(2N, 4N, \cdots, NM/2\)-order non-recursive sections.
- Each section requires \(N\) multiplication:
 - Due to the symmetry of coefficients.
 - Independent of the order of the section.
Power of 2 Decomposition (5)

Consider a 2nd-order recursive filter example

\[H(z) = \frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - 2r \cdot \cos \theta \cdot z^{-1} + r^2 z^{-2}} \]

- the poles are located at \(re^{\pm j\theta} \)
- the pipelined function

\[H(z) = \frac{\left(\sum_{i=0}^{2} b_i z^{-i}\right)}{1 - 2r^M \cdot \cos M\theta \cdot z^{-M} + r^{2M} z^{-2M}} \times \prod_{i=0}^{\log_2 M-1} \left(1 + 2r^{2^i} \cdot \cos 2^i \theta \cdot z^{2^i} + r^{2^i+1} z^{-2^i+1}\right) \]

- the 2M poles are located at

\[z = re^{\pm j(\theta + (2\pi i / M))}, \quad i = 0, 1, 2, \ldots, (M - 1) \]

- implementation complexity is \((2\log_2 M + 5)\) multiplications

Power of 2 Decomposition (6)

(a) pole diagram of the 2nd order filter
(b) poles & zeros of the pipelined 2nd order filter with 8 loop pipelining stages
(c) decomposition of poles and zeros of the pipelined filter
Power of 2 Decomposition (7)

- Implementation of the original and the pipelined scattered look-ahead recursive filters

Scattered LA Pipelining with General decomposition

- For an N-th order filter with M levels of pipelining
 - \(N(M-1) \) canceling zeros
 - for \(M = M_1M_2 \cdots M_p \) decomposition
 - the 1st stage implements \(N(M_1-1) \) zeros
 - the 2nd stage implements \(NM_1(M_2-1) \) zeros
 - the Pth stage implements \(NM_1M_2 \cdots M_{p-1}(M_p-1) \) zeros

- the non-recursive portion requires \(NM \) delays and \(N \cdot \sum_{i=1}^{P} (M_i - 1) \) multipliers

- generation decomposition of high order IIR filter
 - decompose into cascade of 1st order sections
 - apply general decomposition to each 1st order section
Parallel Processing for IIR Filters (1)

1st order IIR filter case

- \[H(z) = \frac{z^{-1}}{1 - az^{-1}} \] where \(|a| \leq 1\)
- \[y(n+1) = ay(n) + u(n) \]
- for a 4-parallel architecture implementation
- \[y(n+4) = a^4y(n) + a^3u(n) + a^2u(n+1) + au(n+2) + u(n+3) \]
- by substituting \(n = 4k \)
- \[y(4k+4) = a^4y(4k) + a^3u(4k) + a^2u(4k+1) + au(4k+2) + u(4k+3) \]
- pole of the original system is at \(z = a \)
- pole of the parallel system is at \(z = a^4 \)
- pole is moved toward the origin \(\Rightarrow \) improved robustness to the round-off error

Parallel Processing for IIR Filters (2)

- Note that in pipelined processing case, canceling poles and zeros are introduced

- Substituting \(n \) with \(4k+4, 4k+5, 4k+6, 4k+7 \) leading to 4 parallel processing blocks
Parallel Processing for IIR Filters (3)

- require L^2 MAC operations
- one delay element represents L sample delays

Parallel Processing for IIR Filters (4)

- Incremental block processing
 - use $y(4k)$ to compute $y(4k+1)$,
 - i.e. $y(4k+1) = a \cdot y(4k) + u(4k)$
 - and then use $y(4k+1)$ to compute $y(4k+2)$, then $y(4k+3)$
 - the hardware complexity is reduced from L^2 to $2L-1$
 - increased computation time for $y(4k+1)$, $y(4k+2)$, $y(4k+3)$
Parallel Processing for IIR Filters (5)

- Incremental block filter structure with L = 4

![Diagram of incremental block filter structure with L = 4]

Parallel Processing for IIR Filters (6)

- A second order IIR example for block processing

\[H(z) = \frac{(1 + z^{-1})^2}{1 - \frac{5}{4}z^{-1} + \frac{3}{8}z^{-2}} \]

\[y(n) = \frac{5}{4} y(n-1) - \frac{3}{8} y(n-2) + f(n), \]

where \(u(n) + 2u(n-1) + u(n-2) \)

- 3-parallel system
 - compute \(y(3k+3) \) and \(y(3k+4) \) using \(y(3k) \) and \(y(3k+1) \)
 - for \(y(3k) \), \(y(3k+1) \rightarrow y(3k+3) \Rightarrow 2\text{-stage clustered LA} \)
 - for \(y(3k) \), \(y(3k+1) \rightarrow y(3k+4) \Rightarrow 3\text{-stage clustered LA} \)
Parallel Processing for IIR Filters (7)

- **2 & 3-stage clustered look ahead**

\[y(n) = \frac{5}{4} y(n-1) - \frac{3}{8} y(n-2) + f(n) \]
\[= \frac{5}{4} \left[\frac{5}{4} y(n-2) - \frac{3}{8} y(n-3) + f(n-1) \right] - \frac{3}{8} y(n-2) + f(n) \]
\[= \frac{19}{16} \left[\frac{5}{4} y(n-3) - \frac{3}{8} y(n-4) + f(n-2) \right] - \frac{15}{32} y(n-3) + \frac{5}{4} f(n-1) + f(n) \]

- **2-loop update equation**

\[y(3k + 3) = \frac{19}{16} y(3k + 1) - \frac{15}{32} y(3k) + \frac{5}{4} f(3k + 2) + f(3k + 3) \]
\[y(3k + 4) = \frac{65}{64} y(3k + 1) - \frac{57}{128} y(3k) + \frac{19}{16} f(3k + 2) + \frac{5}{4} f(3k + 3) + f(3k + 4) \]

Parallel Processing for IIR Filters (8)

- Pole zero plots of the transfer function
- Loop update for block size = 3
- Relationship of recursion outputs
Parallel Processing for IIR Filters (9)

- \(y(3k+2) \) can be obtained incrementally

\[
y(3k + 2) = \frac{5}{4} y(3k + 1) - \frac{3}{8} y(3k) + f(3k + 2)
\]

Comments

- The original system has 2 poles at 1/2 and 3/4
- Transformed system

\[
\begin{pmatrix}
 y(3k + 3) \\
 y(3k + 4)
\end{pmatrix} =
\begin{pmatrix}
 -\frac{15}{32} & \frac{19}{16} \\
 -\frac{57}{128} & \frac{65}{64}
\end{pmatrix}
\begin{pmatrix}
 y(3k) \\
 y(3k + 1)
\end{pmatrix} +
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix}
\]

- The matrix has eigenvalues \((1/2)^3\) and \((3/4)^3\)
- The parallel system is more stable
- The parallel system has the same number of poles as the original system
- Hardware complexity
 - For a 2nd order IIR filter (N=2)
 - \(3L + [(L-2) + (L-1)] + 4 + 2(L-2) = 7L - 3\) MPY operations
To achieve a speed up $L \times M$

- L is the block size and M is the no. of pipelining stage
- for $H(z)=1/(1-a\cdot z^{-1})$ with $M = 4$ and $L = 3$
- $H(z)$ is 1st order \Rightarrow 1 loop update equation is required and the other two can be computed incrementally
- $M = 4 \Rightarrow$ loop contains 4 delay elements
- $L = 3 \Rightarrow y(3k+12) \leftarrow y(3k)$

12-step look ahead transform

\[y(n) = ay(n-1) + u(n) = a^{12}y(n-12) + a^{11}u(n-11) + a^{10}u(n-10) + \cdots + u(n) \]

- substituting $n=3k+12$

\[y(3k+12) = a^{12}y(3k) + a^{11}u(3k+1) + a^{10}u(3k+2) + a^9u(3k+3) + a^8u(3k+4) + a^7u(3k+5) + a^6u(3k+6) + a^5u(3k+7) + a^4u(3k+8) + a^3u(3k+9) + a^2u(3k+10) + au(3k+11) + u(3k+12) = a^{12}y(3k) + a^6f_2(3k+6) + a^3f_1(3k+9) + f_1(3k+12) \]
Combined Parallel & Pipelining Processing (3)

- Where

\[f_1(3k + 12) = a^2 u(3k + 10) + au(3k + 11) + u(3k + 12) \]

\[f_2(3k + 12) = a^3 f_1(3k + 9) + f_1(3k + 12) \]

Combined Parallel & Pipelining Processing (4)

- Comments
 - has 4 poles \(a^3, -a^3, ja^3, -ja^3\)
 - decomposition is used for the non-recursive portion
 - multiplication complexity is \(2L-1+\log_2 M\)

- 2nd order filter example with \(L = 3\) and \(M = 2\)

\[H(z) = \frac{(1 + z^{-1})^2}{1 - \frac{5}{4} z^{-1} + \frac{3}{8} z^{-2}} \]

- loop update operations
- original poles 1/2, 3/4
- new poles \(\pm(1/2)^3, \pm(3/4)^3\)
Comments

- Systematic approach to compute pole locations
 - write loop update equations using LM-level look ahead
 - write the state space representation of the parallel pipelined filter, where state matrix $A_{N \times N}$
 - compute the eigenvalues λ_i of matrix A, $1 \leq i \leq N$
 - NM poles of the new parallel pipelined system correspond to the M-th roots of the eigenvalues of A, $\lambda_i^{\frac{1}{M}}$

Low Power IIR Filter Design

- Parallel and pipelined processing can be used for low power design
- consider a 4-th order Chebyshev low-pass filter

$$H(z) = \frac{0.001836(1 + z^{-1})^4}{(1 - 1.5548z^{-1} + 0.6493z^{-2})(1 - 1.4996z^{-1} + 0.8482z^{-2})}$$

- assume multiplier capacitance is dominant
- assume $V_{dd} = 5V$ and $V_t = 1v$
- using scattered look ahead with power of 2 decomposition
Pipelined processing to reduce power (1)

- 4-level pipelinable transfer function $N(z)/D(z)$

$$N(z) = 0.001836(1 + z^{-1})^4 \times \left(1 + 1.5548z^{-1} + 0.6493z^{-2}\right)(1 + 1.4996z^{-1} + 0.8482z^{-2}) \times \left(1 + 1.1188z^{-2} + 0.4216z^{-4}\right)(1 + 0.5524z^{-2} + 0.7194z^{-4})$$

$$D(z) = (1 - 0.4085z^{-4} + 0.1777z^{-8})(1 + 1.1337z^{-4} + 0.5175z^{-8})$$

- Pipelined design insert delays into the recursive
- Shorter critical path after retiming
- Smaller amount of charging/discharging capacitance in each pipeline stage
- Use lower power supply yet maintain the original speed
- The pipelined supplied βV_0, with $\beta < 1$

Pipelined processing to reduce power (2)

- Propagation delay
 - Sequential system is
 $$T_{pd} = \frac{C_{charge} \times V_{dd}}{k(V_{dd} - V_t)^2} = \frac{C_{charge} \times 5}{k(5 - 1)^2}$$
 - 4-level pipelined system
 $$T_{pd} = \frac{C_{charge}}{4} \frac{5\beta}{k(5\beta - 1)^2}$$
 - $\Rightarrow \beta = 0.476$ and new $V_{dd} = 2.38V$

- Power dissipation
 - The sample period is equal to T_{pd}
 - Sequential system is
 $$P_{seq} = \frac{C_{total}^{(seq)} \times 5^2}{T_{pd}} = m_{seq} C_M 5^2 f_s$$
 - 4-level pipelined system
 $$P_{pip} = \frac{C_{total}^{(pip)} \times 2.38^2}{T_{pd}} = m_{pip} C_M 2.38^2 f_s$$
Pipelined processing to reduce power (3)

- **Power ratio**
 - number of multiplications, \(m_{\text{seq}} = 5 \), \(m_{\text{pip}} = 13 \)

 \[
 \text{Ratio} = \frac{P_{\text{pip}}}{P_{\text{seq}}} \left(\frac{13}{5} \right) \left(\frac{2.38}{5} \right)^2 = 0.5891
 \]

- **Example: a second order IIR filter**
 - \(y(n) = \frac{5}{4} y(n-1) - \frac{3}{8} y(n-2) + u(n) + 2u(n-1) + u(n-2) \)

Parallel processing to reduce the power (1)

- 3-parallel filter design \(\Rightarrow \) 3 outputs per clock cycle
- clock cycle can be three times the sample cycle
- the critical path of the sequential filter is 1 MPY + 1 Add
- feedforward part of the pipelined filter design is retimed
Parallel processing to reduce the power (2)

- Propagation delay
 - The critical path of the parallel design is \(1 \text{ MPY} + 2 \text{ Add} \)
 - Assume the charge/discharge capacitances and the delays are dominated by the multipliers
 - Assume the parallel filter supplied \(\beta V_0 \), with \(\beta < 1 \) and the threshold voltage \(V_t = 0.6V \)
 - Propagation delay (clock cycle) for sequential filter is
 \[
 T_{\text{seq}} = \frac{C_M V_0}{k(V_0 - V_t)^2}
 \]
 - Propagation delay (clock cycle) for parallel filter is
 \[
 T_{\text{par}} = \frac{C_M \beta V_0}{k(\beta V_0 - V_t)^2}
 \]

Choose \(T_{\text{par}} = 3 \ T_{\text{seq}} \) \(\Rightarrow \)
\[
3 \cdot \frac{V_0}{(V_0 - V_t)^2} = \frac{\beta V_0}{(\beta V_0 - V_t)^2}
\]
we get \(\beta = 0.4673 \) and \(\beta V_0 = 2.3365V \)

- Power consumption
 \[
 P_{\text{seq}} = 3C_M V_0^2 f_s
 \]
 \[
 P_{\text{par}} = 12C_M (\beta V_0)^2 \frac{f_s}{3} = 4\beta^2 C_M V_0^2 f_s
 \]
 \[
 \text{Ratio} = \frac{P_{\text{par}}}{P_{\text{seq}}} = \frac{4\beta^2}{3} = 29.116\%
 \]

- Comments
 - The parallel or pipelined design can be used either to achieve high speed or low power operations
Adaptive digital filters are difficult because
- presence of long feedback loop
- look ahead transform leads to prohibitively large hardware overhead
- note that look ahead transform maintains exact input-output mapping
- since coefficients of the adaptive filters continue to change \Rightarrow exact input-output mapping is not necessary

Adaptive filter measurement indexes
- mis-adjustment error
- adaptation time constant

Relaxed look-ahead transform
- aims to pipeline adaptive filter with little hardware overhead and at the expense of marginal degradation of adaptation behavior
- product relaxation
- sum relaxation
- delay relaxation
- the adaptation behavior of the pipelined adaptive filters should be analyzed using stochastic techniques
Consider the 1st order time varying recursion

- $y(n+1) = a(n)y(n) + u(n)$, where coefficient $a(n)$ is time varying
- using look ahead transform

$$y(n + M) = \left(\prod_{i=0}^{M-1} a(n + M - 1 - i) \right) y(n)$$

$$+ \sum_{i=1}^{M-1} \left(\prod_{j=0}^{i-1} a(n + M - 1 - j) \right) u(n + M - 1 - i) + u(n + M - 1)$$

- for $M = 4$, the iteration period is limited to $(T_m + T_a)/4$
- under certain circumstances, we can substitute approximation expressions to simplify the terms in the RHS

Relaxed Look ahead Transform (2)

- A 4-level look head pipelined 1st order
Product Relaxation (1)

- Assumptions
 - $a(n)$ is close to 1 and $a(n) = (1-\varepsilon(n))$, where $\varepsilon(n)$ is close to zero

 $\prod_{i=0}^{M-1} a(n + i) \approx a(n + M - 1)^M = (1 - \varepsilon(n + M - 1))^M$

 $= 1 - M\varepsilon(N + M - 1) = 1 - M(1 - a(n + M - 1))$

 - If $u(n+i)$ is close to zero, then

 $\left|\prod_{j=0}^{i-1} a(n + M - 1 - j)\right| u(n + M - 1 - i) \approx u(n + M - 1 - i)$

 $\Rightarrow y(n + M) = (1 - M(1 - a(n + M - 1)))y(n) + \sum_{i=0}^{M-1} u(n + M - 1 - i)$

Product Relaxation (2)

- A 4-level product relaxed lookahead pipelined 1st order recursion
Product Relaxation (3)

- Another approximation
 - $a(n)$ is assumed to be close to 1

$$\prod_{j=0}^{i-1} a(n + M - 1 - j) \approx a(n + M - 1)$$

$$\Rightarrow y(n + M) = a(n + M - 1)y(n) + \sum_{i=0}^{M-1} u(n + M - 1 - i)$$

Sum Relaxation (1)

- If the input $u(n)$ varies slowly over M cycles

$$y(n + M) = \prod_{i=0}^{M-1} a(n + M - 1 - i)y(n)$$

$$+ \sum_{i=1}^{M-1} \prod_{j=0}^{i-1} a(n + M - 1 - j) \cdot u(n + M - 1 - i) + u(n + M - 1)$$

$$\approx \prod_{i=0}^{M-1} a(n + M - 1 - i)y(n) + Mu(n)$$

- if $u(n)$ is close to zero, then $M u(n) \approx u(n)$

$$y(n + M) \approx \prod_{i=0}^{M-1} a(n + M - 1 - i)y(n) + u(n)$$
Sum Relaxation (2)

- A 4-level sum-relaxed look-ahead pipelined 1st-order recursion

![Diagram of a 4-level sum-relaxed look-ahead pipelined 1st-order recursion]

Delay Relaxation (1)

- Consider the recursion $y(n) = y(n-1) + a(n)u(n)$
- M-level look-ahead pipelined version

$$y(n) = y(n - M) + \sum_{i=0}^{M-1} a(n - i)u(n - i)$$

- delay relaxation involves the use of delayed input $u(n-M')$ and delayed coefficient $a(n-M')$
- assume the product $a(n)u(n)$ is more or less constant over M' samples
- a reasonable assumption for stationary or slowly varying product $a(n)u(n)$

$$y(n) \approx y(n - M) + \sum_{i=0}^{M-1} a(n - M' - i)u(n - M' - i)$$
Comments of relaxation techniques

- Three relaxation techniques can be applied individually or in different combinations to derive a rich variety of architectures
- Each derived architecture has different convergence characteristics
- The relaxed look-ahead is a transform in the stochastic sense

Pipelined LMS Adaptive Filter (1)

- LMS algorithm
 \[e(n) = d(n) - \hat{d}(n) = d(n) - W^T(n-1)U(n) \]
 \[W(n) = W(n-1) + \mu \cdot e(n) \cdot U(n) \]

- 2 recursive loops in the LMS architecture
 - Weight update loop
 - Error feedback loop

- Direct look ahead
 \[W(n) = W(n-1) + \mu \cdot e(n) \cdot U(n) \]
 \[= W(n - M_2) + \sum_{i=0}^{M_2-1} \mu \cdot e(n-i) \cdot U(n-i) \]
 - \(M_2 \) is the delay in the weight update loop
Pipelined LMS Adaptive Filter (2)

- By delay relaxation
 - assume the gradient estimate $e(n)U(n)$ varies slowly

 $$W(n) = W(n - M_2) + \sum_{i=0}^{M_2-1} \mu \cdot e(n-i) \cdot U(n-i)$$

 $$= W(n - M_2) + \sum_{i=0}^{M_2-1} \mu \cdot e(n - M_1 - i) \cdot U(n - M_1 - i)$$

 - the hardware complexity is $N(M_2-1)$ MACs

 - further sum relaxation taking only the first M'_2 sum terms, where $M'_2 \leq M_2$

 $$e(n) = d(n) - W^T(n-1)U(n)$$

 $$= d(n) - [W^T(n - M_2 - 1)$$

 $$+ \mu \sum_{i=0}^{M'_2-1} e(n - M_1 - i - 1)U(n - M_1 - i - 1)]U(n)$$

Pipelined LMS Adaptive Filter (3)

- Assume μ is sufficiently small and replacing $W(n-M_2-1)$ by $W(n-M_2)$

 $$e(n) = d(n) - W^T(n - M_2)U(n)$$

- Diagram of the pipelined LMS adaptive filter system.